<table>
<thead>
<tr>
<th>Fit component</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow D^{*-} \tau^+ (\rightarrow 3\pi \bar{\nu}\tau) \nu\tau$</td>
<td>$N_{\text{sig}} \times f_{\tau \rightarrow 3\pi \nu}$</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{*-} \tau^+ (\rightarrow 3\pi \pi^0 \bar{\nu}\tau) \nu\tau$</td>
<td>$N_{\text{sig}} \times (1 - f_{\tau \rightarrow 3\pi \nu})$</td>
</tr>
<tr>
<td>$B \rightarrow D^{**} \tau^+ \nu_\tau$</td>
<td>$N_{\text{sig}} \times f_{D^{**} \tau \nu}$</td>
</tr>
<tr>
<td>$B \rightarrow D^{*-} D^+ X$</td>
<td>$f_{D^+} \times N_{D_s}$</td>
</tr>
<tr>
<td>$B \rightarrow D^{*-} D^0 X \text{ different vertices}$</td>
<td>$f_{D^0}^{v_1 v_2} \times N_{D_0}^{sv}$</td>
</tr>
<tr>
<td>$B \rightarrow D^{*-} D^0 X \text{ same vertex}$</td>
<td>$N_{D_0}^{sv}$</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{*-} D_s^+$</td>
<td>$N_{D_s} \times f_{D_s^+} / k$</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{-} D_s^$</td>
<td>$N_{D_s} \times 1 / k$</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{*-} D_{s0} (2317)^+$</td>
<td>$N_{D_s} \times f_{D_{s0}^*+} / k$</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{*-} D_{s1} (2460)^+$</td>
<td>$N_{D_s} \times f_{D_{s1}^+} / k$</td>
</tr>
<tr>
<td>$B^0,^+ \rightarrow D^{**} D_s^+ X$</td>
<td>$N_{D_s} \times f_{D_s^+ X} / k$</td>
</tr>
<tr>
<td>$B_s^0 \rightarrow D^{*-} D_s^+ X$</td>
<td>$N_{D_s} \times f_{(D_s^+ X)_s} / k$</td>
</tr>
<tr>
<td>$B \rightarrow D^{*-} 3\pi X$</td>
<td>$N_{B \rightarrow D^* 3\pi X}$</td>
</tr>
<tr>
<td>B1B2 combinatorics</td>
<td>N_{B1B2}</td>
</tr>
<tr>
<td>Combinatoric D^{*-}</td>
<td>$N_{\text{not } D^*}$</td>
</tr>
</tbody>
</table>