Figure 2: The prompt η_c production cross-section as a function of centre-of-mass energy. (Left) Relative η_c prompt production cross-section. (Right) Absolute η_c (black rectangles) and J/ψ (blue circles) prompt production cross-sections. The error bars show uncertainties due to statistical, systematic, and to the knowledge of the branching fractions $B_{b\rightarrow J/\psi X}$.

which combined with $B_{b\rightarrow J/\psi X} = 1.16 \pm 0.10\%$ [?] gives

$$B_{b\rightarrow \eta_c X} = (5.51 \pm 0.32 \pm 0.29 \pm 0.77) \times 10^{-3}.$$

The last uncertainty includes the uncertainty on $B_{b\rightarrow J/\psi X}$. This result is the most precise measurement of the inclusive $b\rightarrow \eta_c X$ branching fraction to date and is in good agreement with the previous LHCb measurement from Ref. [?]. The measurement is limited by the knowledge of the branching fractions $B_{\eta_c\rightarrow p\bar{p}}$ and $B_{b\rightarrow J/\psi X}$.

Numerical results of the measurements of p_T-differential η_c production are given in Appendix B. The relative η_c to J/ψ p_T-differential cross-sections for prompt and b-hadron decay production are compatible to those measured at $\sqrt{s} = 7$ and 8 TeV [?] and are shown in Fig. 3. This is the first p_T-differential cross-section measurement of η_c prompt production at $\sqrt{s} = 13$ TeV. The p_T dependence of the prompt cross-section ratio is found to be linear with a slope of 0.22 ± 0.11 GeV$^{-1}$. While the integrated cross-section is in good agreement with the colour-singlet model prediction [?], a hint of a difference between the J/ψ and η_c slopes motivates the extension of the measurement to larger p_T values. A larger measured slope with respect to the prediction from Ref. [?] would indicate a possible colour-octet contribution. The absolute η_c and J/ψ differential production cross-sections are shown in Fig. 4. The exponential slopes for the η_c and J/ψ prompt differential cross-sections are determined from the fit to data points to be 0.41 ± 0.07 GeV$^{-1}$ and 0.57 ± 0.01 GeV$^{-1}$, respectively.

7 Measurement of the J/ψ–η_c mass difference

While the prompt η_c production measurement requires stringent selection criteria at the trigger level to compete with the challenging background conditions, charmonia produced in b-hadron decays are reconstructed in an environment with a controlled background level and are more suitable for a mass measurement. For this reason, a looser selection is