Table 6: Elements of the unfolding matrix obtained from the PYTHIA $Z \rightarrow \mu^+\mu^-$ sample at $\sqrt{s} = 7$ TeV, used to correct the data for the detector resolution. The generated invariant mass is given in the columns and the reconstructed in the rows. Note that no unfolding for FSR is applied in this analysis.

<table>
<thead>
<tr>
<th>$m_{\mu\mu}$ [GeV]</th>
<th>60 -72</th>
<th>72 -81</th>
<th>81 -86</th>
<th>86 -88</th>
<th>88 -89</th>
<th>89 -90</th>
<th>90 -91</th>
<th>91 -92</th>
<th>92 -93</th>
<th>93 -94</th>
<th>94 -98</th>
<th>98 -120</th>
<th>120 -160</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 -72</td>
<td>0.959</td>
<td>0.027</td>
<td>−</td>
</tr>
<tr>
<td>72 -81</td>
<td>0.038</td>
<td>0.886</td>
<td>0.044</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>0.001</td>
</tr>
<tr>
<td>81 -86</td>
<td>0.001</td>
<td>0.077</td>
<td>0.744</td>
<td>0.100</td>
<td>0.010</td>
<td>0.002</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>0.001</td>
</tr>
<tr>
<td>86 -88</td>
<td>−</td>
<td>0.003</td>
<td>0.150</td>
<td>0.483</td>
<td>0.150</td>
<td>0.030</td>
<td>0.008</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>88 -89</td>
<td>−</td>
<td>0.001</td>
<td>0.024</td>
<td>0.202</td>
<td>0.302</td>
<td>0.123</td>
<td>0.031</td>
<td>0.010</td>
<td>0.005</td>
<td>0.004</td>
<td>0.002</td>
<td>0.001</td>
<td>−</td>
</tr>
<tr>
<td>89 -90</td>
<td>0.001</td>
<td>0.001</td>
<td>0.015</td>
<td>0.113</td>
<td>0.291</td>
<td>0.337</td>
<td>0.160</td>
<td>0.054</td>
<td>0.023</td>
<td>0.015</td>
<td>0.008</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>90 -91</td>
<td>0.001</td>
<td>0.002</td>
<td>0.012</td>
<td>0.065</td>
<td>0.170</td>
<td>0.347</td>
<td>0.443</td>
<td>0.285</td>
<td>0.130</td>
<td>0.073</td>
<td>0.034</td>
<td>0.008</td>
<td>0.001</td>
</tr>
<tr>
<td>91 -92</td>
<td>−</td>
<td>0.002</td>
<td>0.007</td>
<td>0.029</td>
<td>0.063</td>
<td>0.130</td>
<td>0.290</td>
<td>0.464</td>
<td>0.384</td>
<td>0.221</td>
<td>0.092</td>
<td>0.013</td>
<td>0.009</td>
</tr>
<tr>
<td>92 -93</td>
<td>−</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
<td>0.011</td>
<td>0.024</td>
<td>0.057</td>
<td>0.152</td>
<td>0.326</td>
<td>0.313</td>
<td>0.128</td>
<td>0.011</td>
<td>0.002</td>
</tr>
<tr>
<td>93 -94</td>
<td>−</td>
<td>−</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
<td>0.004</td>
<td>0.009</td>
<td>0.025</td>
<td>0.103</td>
<td>0.257</td>
<td>0.177</td>
<td>0.011</td>
<td>0.001</td>
</tr>
<tr>
<td>94 -98</td>
<td>−</td>
<td>−</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.006</td>
<td>0.026</td>
<td>0.115</td>
<td>0.525</td>
<td>0.133</td>
<td>0.003</td>
</tr>
<tr>
<td>98 -120</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>0.001</td>
<td>0.033</td>
<td>0.811</td>
<td>0.067</td>
</tr>
<tr>
<td>120 -160</td>
<td>−</td>
<td>0.007</td>
<td>0.908</td>
<td></td>
</tr>
</tbody>
</table>