<table>
<thead>
<tr>
<th>n</th>
<th>(K_n)</th>
<th>(F_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{\Gamma_L}</td>
<td>A_0</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{\Gamma_L}</td>
<td>A_\parallel</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{1}{\Gamma_H}</td>
<td>A_\perp</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{1}{\Gamma_L}</td>
<td>A_\parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-\frac{1}{2\sqrt{2}} \sin 2\theta_1 \sin 2\theta_2 \sin \varphi)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>(-\frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \sin 2\varphi)</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>(\frac{1}{3} \cos^2 \theta_1)</td>
</tr>
<tr>
<td>7</td>
<td>(\frac{1}{2} \left(\frac{</td>
<td>A_s^+</td>
</tr>
<tr>
<td>8</td>
<td>(\frac{1}{2} \left(\frac{</td>
<td>A_s^+</td>
</tr>
<tr>
<td>9</td>
<td>(\frac{1}{\sqrt{2}} \frac{1}{\Gamma_L}</td>
<td>A_s^-</td>
</tr>
<tr>
<td>10</td>
<td>(\frac{1}{\sqrt{2}} \frac{1}{\Gamma_H}</td>
<td>A_s^+</td>
</tr>
<tr>
<td>11</td>
<td>(\frac{1}{\sqrt{2}} \frac{1}{\Gamma_L}</td>
<td>A_s^-</td>
</tr>
<tr>
<td>12</td>
<td>(\frac{1}{\sqrt{2}} \frac{1}{\Gamma_H}</td>
<td>A_s^+</td>
</tr>
<tr>
<td>13</td>
<td>(\frac{1}{2} \left(\frac{</td>
<td>A_s^+</td>
</tr>
<tr>
<td>14</td>
<td>(\frac{1}{\sqrt{2}} \frac{1}{\Gamma_H}</td>
<td>A_s^+</td>
</tr>
<tr>
<td>15</td>
<td>(\frac{1}{\sqrt{2}} \frac{1}{\Gamma_H}</td>
<td>A_s^+</td>
</tr>
<tr>
<td>16</td>
<td>(\frac{1}{\sqrt{2}} \frac{1}{\Gamma_H}</td>
<td>A_s^-</td>
</tr>
<tr>
<td>17</td>
<td>(\frac{1}{\Gamma_H}</td>
<td>A_{ss}</td>
</tr>
<tr>
<td>18</td>
<td>(\frac{1}{\Gamma_L}</td>
<td>A_{ss}</td>
</tr>
<tr>
<td>19</td>
<td>(\frac{1}{\Gamma_L}</td>
<td>A_{ss}</td>
</tr>
<tr>
<td>20</td>
<td>(\frac{1}{\Gamma_L}</td>
<td>A_{ss}</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>(-\frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \sin 2\varphi)</td>
</tr>
</tbody>
</table>