<table>
<thead>
<tr>
<th>MLP category</th>
<th>((0.02, 0.2))</th>
<th>([0.2, 0.4))</th>
<th>([0.4, 0.6))</th>
<th>([0.6, 1.0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{B_c^+})</td>
<td></td>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_{B_c^+})</td>
<td></td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_B)</td>
<td>4.2%</td>
<td>9.0%</td>
<td>15.0%</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

\(B_c(2S)^+ \rightarrow B_c^+ \pi^+ \pi^-\)

| \(\varepsilon_{B_c(2S)^+}\) | 4.6\% | 4.7\% | 4.9\% | 3.6\% |
| Efficiency variation vs. \(M(B_c(2S)^+))\) | 0.6\% | 1.3\% | 1.8\% | 2.7\% |

\(B_c^*(2S)^+ \rightarrow B_c^{*+} \pi^+ \pi^-\)

| \(\varepsilon_{B_c^*(2S)^+}\) | 3.5\% | 3.3\% | 3.3\% | 2.7\% |
| Efficiency variation vs. \(M(B_c^*(2S)^+)\) | 1.0\% | 1.8\% | 2.5\% | 4.3\% |