1 Distribution of flattened MLP response

The MLP response distributions for the signal, background and same-sign samples, after being transformed to make the signal candidates distributed evenly between zero and unity, are shown in Fig. 1.

![Flattened MLP response](image)

Figure 1: Flattened distribution of the MLP response for the signal sample from simulation, together with the distributions for the background from the sidebands and same-sign samples. The red line stands for the signal simulation, the black line the data sidebands, and the blue line the same-sign sample. The vertical green lines indicate the boundaries of the MLP categories.

2 Theoretical predictions of R

The ratio R can be predicted using BCVEGPY [1]. The wave function at the origin, $R(0)$, is taken to be $1.241 \text{ GeV}^{3/2}$ for $B_c(1S)$ states, and $0.991 \text{ GeV}^{3/2}$ for $B_c(2S)$ states [2]. The masses of b and c quarks are set to $m(b) = 5400 \text{ MeV}/c^2$ and $m(c) = 1458 \text{ MeV}/c^2$ for $B_c(2S)^+$, and $m(b) = 5400 \text{ MeV}/c^2$ and $m(c) = 1490 \text{ MeV}/c^2$ for $B_c^*(2S)^+$, respectively. The production cross-sections of the B_c mesons are calculated using several theoretical models [3,4]. Under the assumption that 15% of the B_c^+ mesons come from the P-wave states [3], the BCVEGPY generator predicts

$$\frac{\sigma_{B_c(2S)^+}}{\sigma_{B_c^*}} = 0.04$$ \hspace{1cm} (1)
and
\[\frac{\sigma_{B_c^+(2S)^+}}{\sigma_{B_c^+}} = 0.10, \] (2)

which are consistent with the predictions given in Ref. [5], while according to Ref. [6], the production cross-section ratios are
\[\frac{\sigma_{B_c^+(2S)^+}}{\sigma_{B_c^+}} = 0.09 \] (3)

and
\[\frac{\sigma_{B_c^+(2S)^+}}{\sigma_{B_c^+}} = 0.23. \] (4)

Considering the branching fractions \(\mathcal{B}(B_c^+(2S)^+ \rightarrow B^{(s)+}_c \pi^+ \pi^-) \), Ref. [5] predicts \(\mathcal{B}(B_c^+(2S)^+ \rightarrow B^+_c \pi^+ \pi^-) = 49\% \) and \(\mathcal{B}(B_c^+(2S)^+ \rightarrow B^{(s)+}_c \rightarrow B^+_c \gamma) \pi^+ \pi^-) = 39\% \), and Ref. [7] predicts \(\mathcal{B}(B_c^+(2S)^+ \rightarrow B^+_c \pi^+ \pi^-) = 59\% \) and \(\mathcal{B}(B_c^+(2S)^+ \rightarrow B^{(s)+}_c \rightarrow B^+_c \gamma) \pi^+ \pi^-) = 53\% \). The predicted values of \(\mathcal{R} \) are summarised in Table 1.

<table>
<thead>
<tr>
<th>Ref. for (\mathcal{B}) prediction</th>
<th>(\mathcal{R}_{B_c(2S)^+})</th>
<th>(\mathcal{R}_{B_c^+(2S)^+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCVEGPY with listed settings</td>
<td>5</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.02</td>
</tr>
<tr>
<td>Production according to Ref. 5</td>
<td>5</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.02</td>
</tr>
<tr>
<td>Production according to Ref. 7</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.05</td>
</tr>
</tbody>
</table>

References

